Contents
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
解法一:

dp数组记录符合的所有可能
dp[n][1~3] 长度为n时,最后面是1~3个相同的

状态转移方程:
dp[i][1] = 25 * (dp[i - 1][1] + dp[i - 1][2] + dp[i - 1][3]);
dp[i][2] = dp[i - 1][1];
dp[i][3] = dp[i - 1][2];


#include <iostream>
#include <cstdio>
#include <cstdlib>
#define MOD 1000000007

using namespace std;

long long dp[2005][4] = {0};

int main()
{

dp[1][1] = 26;
for(int i = 2; i <= 2000; i++){
dp[i][1] = 25 * (dp[i - 1][1] + dp[i - 1][2] + dp[i - 1][3]) % MOD;
dp[i][2] = dp[i - 1][1];
dp[i][3] = dp[i - 1][2];
}
int t, n;
scanf("%d", &t);
while(t--){
scanf("%d", &n);
printf("%d\n", int((dp[n][1] + dp[n][2] + dp[n][3]) % MOD));
}
return 0;
}


解法二:

状态转移方程:
dp[i] = 25 * (dp[i - 1] + dp[i - 2] + dp[i - 3]);

#include <cstdio>
#define MOD 1000000007

long long dp[2005] = {0};

int main()
{

dp[1] = 26;
dp[2] = 26 * 26;
for (int i = 2; i <= 2000; ++i)
dp[i]= 25 * (dp[i - 1] + dp[i - 2] + dp[i - 3]) % MOD;
int t, n;
scanf("%d", &t);
while (t--)
{
scanf("%d", &n);
printf("%d\n", int((dp[n] + dp[n - 1] + dp[n - 2]) % MOD));
}
return 0;
}
Contents