1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
| lowcost数组里的值是adjvex数组里的点指向相应下标的点的权值 lowcost数组保存相关顶点到邻接点(边)的权值,此权值是生成树里的点到该邻接点的最小权值 例如: 0 1 2 3 4 5 6 A B C D E F G adjvex: 0 0 0 0 3 3 0 lowcost:0 7 x 0 15 6 x lowcost[1]=7的意思是:0顶点(A)(adjvex[1])指向B点(相应下标)的权值 lowcost[4]=15的意思是:3顶点(D)(adjvex[4])指向E(相应下标)的权值
- prime算法是维护一个集合到某个点的最短距离的数组 - 迪杰斯特拉算法是维护一个点到点的最短距离的数组
#include <stdio.h> #include <stdlib.h> #include <string.h> typedef char VertexType; typedef int EdgeTyep;
#define MAXVEX 100 #define INFINITY 65535 #define DEBUG
typedef struct Graph{ VertexType vexs[MAXVEX]; EdgeTyep arc[MAXVEX][MAXVEX]; int numVertexes, numEdges; }Graph;
int Locates(Graph *g, char ch) { int i; for(i = 0; i < g->numVertexes; i++) { if(g->vexs[i] == ch) break; } if(i >= g->numVertexes) return -1; return i; }
void CreatGraph(Graph *g) { int i, j, w, k; printf("please input numVertexes and numEdges\n"); scanf("%d %d", &(g->numVertexes), &(g->numEdges)); getchar(); #ifdef DEBUG printf("%d %d\n", g->numVertexes, g->numEdges); #endif for(i = 0; i < g->numVertexes; i++) { printf("请输入顶点%d:\n", i); scanf("%c", &(g->vexs[i])); getchar(); while(g->vexs[i] == '\n')//吃回车 { g->vexs[i] = getchar(); }*/ } #ifdef DEBUG for(i = 0; i < g->numVertexes; i++) { printf("%c ", g->vexs[i]); } printf("\n"); #endif for(i = 0; i < g->numEdges; i++) { for(j = 0; j < g->numEdges; j++) { g->arc[i][j] = INFINITY; } } for(k = 0; k < g->numEdges; k++) { char p, q; printf("please input i, j, w in Edge(vi, vj)\n");
scanf("%c %c %d", &p, &q, &w); getchar(); int m = -1; int n = -1; m = Locates(g, p); n = Locates(g, q); if(n == -1 || m == -1) { printf("There is no vertex !\n"); return ; } g->arc[m][n] = w; g->arc[n][m] = g->arc[m][n]; } }
void printGraph(Graph g) { int i, j; printf("The Graph is under this sentence\n"); for(i = 0; i < g.numVertexes; i++) { for(j = 0; j < g.numVertexes; j++) { printf("%5d ", g.arc[i][j]); } printf("\n"); } }
void MiniSpanTree_Prime(Graph g) { int mins, i, j, k; int adjvex[MAXVEX]; int lowcost[MAXVEX]; lowcost[0] = 0; adjvex[0] = 0; for(i = 1; i < g.numVertexes; i++) { lowcost[i] = g.arc[0][i]; adjvex[i] = 0; } for(i = 1; i < g.numVertexes; i++) { mins = INFINITY; j = 1; k = 0; while(j < g.numVertexes) { if(lowcost[j] != 0 && lowcost[j] < mins) { mins = lowcost[j]; k = j; } j++; } printf("(%d,%d)", adjvex[k], k); lowcost[k] = 0;
for(j = 1; j < g.numVertexes; j++) { if(lowcost[j] != 0 && g.arc[k][j] < lowcost[j]) { lowcost[j] = g.arc[k][j]; adjvex[j] = k; }
} } printf("\n"); }
int main() { Graph g; CreatGraph(&g); printGraph(g); MiniSpanTree_Prime(g);
return 0; }
|